« Предыдущий вопрос
Энергетический смысл уравнения Бернулли

Пусть теперь имеем установившееся движение жидкости, которая невязкая, несжимаемая.
И пус

Загрузка
Скачать Получить на телефон
например +79131234567

txt fb2 ePub html

на телефон придет ссылка на файл выбранного формата

Что это

Шпаргалки на телефон — незаменимая вещь при сдаче экзаменов, подготовке к контрольным работам и т.д. Благодаря нашему сервису вы получаете возможность скачать на телефон шпаргалки по гидравлике и гидроприводе. Все шпаргалки представлены в популярных форматах fb2, txt, ePub , html, а также существует версия java шпаргалки в виде удобного приложения для мобильного телефона, которые можно скачать за символическую плату. Достаточно скачать шпаргалки по гидравлике и гидроприводе — и никакой экзамен вам не страшен!

Сообщество

Не нашли что искали?

Если вам нужен индивидуальный подбор или работа на заказа — воспользуйтесь этой формой.

Следующий вопрос »
Уравнения движения вязкой жидкости

Для получения уравнения движения вязкой жидкости рассмотрим такой же объем жидкости dV = dxdy

Геометрический смысл уравнения Бернулли



Основу теоретической части такой интерпретации составляет гидравлическое понятие напор, которое принято обозначать буквой Н, где



Гидродинамический напор Н состоит из следующих разновидностей напоров, которые входят в формулу (198) как слагаемые:

1) пьезометрический напор, если в (198) p = pизг, или гидростатический, если p ≠ pизг;

2) U2/2g – скоростной напор.

Все слагаемые имеют линейную размерность, их можно считать высотами. Назовем эти высоты:

1) z – геометрическая высота, или высота по положению;

2) p/ρg – высота, соответствующая давлению p;

3) U2/2g – скоростная высота, соответствующая скорости.

Геометрическое место концов высоты Н соответствует некоторой горизонтальной линии, которую принято называть напорной линией или линией удельной энергии.

Точно так же (по аналогии) геометрические места концов пьезометрического напора принято называть пьезометрической линией. Напорная и пьезометрическая линии расположены друг от друга на расстоянии (высоте) pатм/ρg, поскольку p = pизг + pат, т. е.



Отметим, что горизонтальная плоскость, содержащая напорную линию и находящаяся над плоскостью сравнения, называется напорной плоскостью. Характеристику плоскости при разных движениях называют пьезометрическим уклоном Jп, который показывает, как изменяется на единице длины пьезометрический напор (или пьезометрическая линия):



Пьезометрический уклон считается положительным, если он по течению струйки (или потока) уменьшается, отсюда и знак минус в формуле (3) перед дифференциалом. Чтобы Jп остался положительным, должно выполняться условие