« Предыдущий вопрос
Вихревое движение

Особенности видов движения, рассматриваемых в гидродинамике.
Можно выделить следующие вид

Загрузка
Скачать Получить на телефон
например +79131234567

txt fb2 ePub html

на телефон придет ссылка на файл выбранного формата

Что это

Шпаргалки на телефон — незаменимая вещь при сдаче экзаменов, подготовке к контрольным работам и т.д. Благодаря нашему сервису вы получаете возможность скачать на телефон шпаргалки по гидравлике и гидроприводе. Все шпаргалки представлены в популярных форматах fb2, txt, ePub , html, а также существует версия java шпаргалки в виде удобного приложения для мобильного телефона, которые можно скачать за символическую плату. Достаточно скачать шпаргалки по гидравлике и гидроприводе — и никакой экзамен вам не страшен!

Сообщество

Не нашли что искали?

Если вам нужен индивидуальный подбор или работа на заказа — воспользуйтесь этой формой.

Следующий вопрос »
Потенциал скорости и ускорение при ламинарном движении

φ = φ(x, y, z) (1) Функция φ называется потенциалом скорости.
С учетом этого

Ламинарное движение



Это движение, называют также потенциальным (безвихревым) движением.

При таком движении отсутствует вращение частиц вокруг мгновенных осей, которые проходят через полюсы жидких частиц. По этой причине:

υx = 0; υy = 0; υz = 0. (1)

ωx = ωy = ωz = 0.

Выше отмечалось, что при движении жидкости происходит не только изменение положения частиц в пространстве, но и их деформация по линейным параметрам. Если рассмотренное выше вихревое движение является следствием изменения пространственного положения жидкой частицы, то ламинарное (потенциальное, или безвихревое) движение является следствием деформационных явлений линейных параметров, например, формы и объема.

Вихревое движение определялось направлением вихревого вектора



где υ – угловая скорость, которая является характеристикой угловых деформаций.

Деформацию этого движения характеризируют деформацией этих компонентов



Но, поскольку при ламинарном движении υx=υy= υz= 0, то:



Из этой формулы видно: поскольку существуют частные производные, связанные между собой в формуле (4), то эти частные производные принадлежат некоторой функции.