« Предыдущий вопрос
Распределение скоростей в «живом» сечении потока

Современной гидродинамике удалось разрешить эти проблемы, применив метод статистического анал

Загрузка
Скачать Получить на телефон
например +79131234567

txt fb2 ePub html

на телефон придет ссылка на файл выбранного формата

Что это

Шпаргалки на телефон — незаменимая вещь при сдаче экзаменов, подготовке к контрольным работам и т.д. Благодаря нашему сервису вы получаете возможность скачать на телефон шпаргалки по гидравлике и гидроприводе. Все шпаргалки представлены в популярных форматах fb2, txt, ePub , html, а также существует версия java шпаргалки в виде удобного приложения для мобильного телефона, которые можно скачать за символическую плату. Достаточно скачать шпаргалки по гидравлике и гидроприводе — и никакой экзамен вам не страшен!

Сообщество

Не нашли что искали?

Если вам нужен индивидуальный подбор или работа на заказа — воспользуйтесь этой формой.

Следующий вопрос »
Равномерное движение и коэффициент сопротивления по длине. Формула Шези. Средняя скорость и расход потока

При ламинарном движении (если оно равномерное) ни живое сечение, ни средняя скорость, ни эпюр

Параметры потока, от которых зависит потеря напора. Метод размерностей



Неизвестный вид зависимости определяется по методу размерностей. Для этого существует π-теорема: если некоторая физическая закономерность выражена уравнением, содержащим к размерных величин, причем оно содержит п величин с независимой размерностью, то это уравнение может быть преобразовано в уравнение, содержащее (к-п) независимых, но уже безразмерных комплексов.

Для чего определимся: от чего зависят потери напора при установившемся движении в поле сил тяжести.

Эти параметры.

1. Геометрические размеры потока:

1) характерные размеры живого сечения l1l2;

2) длина рассматриваемого участка l;

3) углы, которыми завершается живое сечение;

4) свойства шероховатости: Δ– высота выступа и lΔ – характер продольного размера выступа шероховатости.

2. Физические свойства:

1) ρ – плотность;

2) μ – динамическая вязкость жидкости;

3) δ – сила поверхностного натяжения;

4) Еж – модуль упругости.

3. Степень интенсивности турбулентности, характеристикой которой является среднеквадратичное значение пульсационных составляющих δu.

Теперь применим π-теорему.

Исходя из приведенных выше параметров, у нас набирается 10 различных величин:

l, l2, Δ, lΔ, Δp, μ, δ, Eж,δu, t.

Кроме этих, имеем еще три независимых параметра: l1, ρ, υ. Добавим еще ускорение падения g.

Всего имеем к = 14 размерных величин, три из которых независимы.

Требуется получить (ккп) безразмерных комплексов, или, как их называют π-членов.

Для этого любой параметр из 11, который не входил бы в состав независимых параметров (в данном случае l1, ρ, υ), обозначим как Ni, теперь можно определить безразмерный комплекс, который является характеристикой этого параметра Ni, то есть i-тый π-член:



Здесь углы размерности базовых величин:



общий вид зависимости для всех 14 параметров имеет вид: