Средняя величина – это обобщающая характеристика единиц совокупности по какому-либо варьирующему при
txt fb2 ePub html
на телефон придет ссылка на файл выбранного формата
Шпаргалки на телефон — незаменимая вещь при сдаче экзаменов, подготовке к контрольным работам и т.д.
Благодаря нашему сервису вы получаете возможность скачать
на телефон шпаргалки по Статистике.
Все шпаргалки представлены в популярных форматах fb2, txt, ePub , html,
а также существует версия java шпаргалки в виде удобного приложения для мобильного телефона, которые можно скачать за символическую плату.
Достаточно скачать шпаргалки по Статистике — и никакой экзамен вам не страшен!
Не нашли что искали?
Если вам нужен индивидуальный подбор или работа на заказа — воспользуйтесь этой формой.
Следующий вопрос »Для характеристики структуры статистической совокупности применяются показатели, которые называют ст
Виды средних величин
Математическая статистика использует различные средние, такие как: средняя арифметическая; средняя геометрическая; средняя гармоническая; средняя квадратическая.
В изучении средних величин применяются следующие показатели и обозначения.
Признак, по которому находится средняя, называется осредняемым признаком и обозначается х; величина осредняемого признака у любой единицы статистической совокупности называют индивидуальным его значением, или вариантами, и обозначают как хл, х2, x3,… хп; частота – это повторяемость индивидуальных значений признака, обозначается буквой f.
Один из наиболее распространенных видов средней – средняя арифметическая, которая исчисляется тогда, когда объем осредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.
Для вычисления средней арифметической величины сумму всех уровней признака делят на их число.
Если некоторые варианты встречаются несколько раз, то сумму уровней признака можно получить умножением каждого уровня на соответствующее число единиц совокупности с последующим сложением полученных произведений, исчисленная таким образом средняя арифметическая называется средней арифметической взвешенной.
Для того чтобы определить среднюю арифметическую, необходимо иметь ряд вариантов и частот, т. е. значения х и f.
Средняя гармоническая взвешенная, тождественна средней арифметической: Когда произведения fxодинаковы или равны
единицы (m= 1) применяется средняя гармоническая
простая:
где х– отдельные варианты; n– число.
Если имеется n коэффициентов роста, то формула среднего коэффициента:
Средняя геометрическая равна корню степени n из произведения коэффициентов роста, характеризующих отношение величины каждого последующего периода к величине предыдущего.
Средняя квадратическая простая определяется путем извлечения квадратного корня из частного от деления суммы квадратов отдельных значений признака на их число.
Средняя квадратическая взвешенная равна: